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NONSTATIONARY RADIATION FIELD IN A SEMI-INFINITE MEDIUM
WITH NONISOTROPIC SCATTERING

A.M. Gurfink

In conjunction with practical requirements, a nonstationary radiation field theory / 70*

has recently been developed successfully. The theory has extremely wide application

in areas of endeavor using pulsed light sources for purposes of rangefinding, communi-

cations, atmospheric and water basin probes, etc. The solution of the nonstationary

transport equation in an isotropically scattering semi-infinite medium by the Schuster-

Schwarzschild method is given in [1]. However, the solution obtained is not applicable

for calculating light fields in anisotropic media with a severely elongated light-scattering

envelope. In this paper it is solved approximately by V. V. Sobolev's method [2], in

which first-order scattering is taken into consideration exactly, and higher-order scat-

tering is treated approximately, by retaining only the first two terms in the Legendre

polynomial expansion of the equation for the envelope. However, the use of this method
in the transition to the nonstationary problem leads to extremely complicated formulas,

so that for simplicity we assume the higher-order scattering is isotropic.

We will present briefly the solution of the stationary problem, ad then we will ex-

tend it to the nonstationary case.

Let the boundary of a semi-infinite isotropical'j scattering medi m be illuminated

by parallel rays, incident at an angle arccos t. Let us denote by rS tie illuminance of

a unit area, perpendicular to the rays at the boundary of the medium. Let us ignore

the effect of light transmission through the boundary, i.e., we will assume that the / 71
radiation enters the medium. In the case of isotropic scattering the radiation trans-

port and the radiant equilibrium equation have the form

dl(N'j.' ) -1(4, '. t 3I - (. , i); (1)

i (2)

*Numbers in the margin indicate pagination in the foreign text.
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Here r is the optical depth; I(r, n7, C) is the intensity of the diffusely scattered radiation,

traveling at an angle arccos 71 to the normal; B(r, 17, t) is the source function.

Let us denote by Ii(r, t) and 12(r, ) the intensities of the light traveling inside

the medium and in the opposite direction, i. e., let us state

(3)

0

-1 (4)

In the Schuster-Schwarzschild approximation Eqs. (1) and (2) with the notations of (3)

and (4) are reduced to the form

d2(it + 12) 'kt2+I)+2Se-I=O
d2 k t (2)+ (Se= 5)

where

k2-4(1 -X). (6)

The solution of Eq. (5) must be sought for the boundary condition that takes into

consideration that diffuse radiation, traveling inside the medium, is absent at the

boundary, i.e.,

it(, = 0 for -- 0. (7)

The solution of Eq. (5) has the form

I +I 2=Ce- '- De"- ' , (8)

where

D- - k2-~CS. (9)
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For the boundary condition (7)

+D 1+2C (10)

from which we obtain the expression / 72

.%(I +9T) Sekr + . S -- _r 2  ,.. -t
B( (2 )- + k) (1- VV ) -- j--k-(iC)

for the source function B(T, t). For light normally incident on the boundary of the

medium the last formula assumes the form

3)B ( 3 ).
B(, 1)- (2 + k)( - k-) Se- 4 S e . (12)

According to what has been said above, to calculate B(r, t) for an arbitrary scat-

ter'ng function the term, taking account of the first-order isotropic scattering, must be

subtracted from the right side of Eq. (11) and a term, corresponding to the given func-

tion, must be added. As a result we arrive at the expression

B (c , +) - S e2) - S- -) (1 3 )
(2 +k) (I - A2 C2  [ IX k2C2 (13)

and for = 1

B Se- -- Sx (T) -- _F e
: ( ) (2 + k) (I -k) 1- 0 . (14)

Let us go on to the nonstationary case. Let us denote by t1 and t 2 the average time

spent by a quantum in the absorbed state and in transit between two successive scatter-

ing events, respectively. In place of the time t we introduce the dimensionless time u

and the constants p1 and 132:

it+ '4 2 I t + 12 ' t +t2 ' (15)
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Usually fl1 and 62 are different in their order of magnitude. Since in problems of atmo-

spheric optics and hydro-optics nonstationarity is caused primarily by the finiteness of

the velocity of light, then B1 << 2; therefore below let us take 61 = 0, B2 = 1.

Let us assume that S(u) = 6 (u), where 8 (u) is the Dirac delta function, i.e., we

will assume that the medium was subjected to an instantaneous action of radiation sources.

To obtain the solution in the nonstationary case we use a known method [3], which is

based on finding the Laplace transform of any characteristic of the radiation field, with

respect to time directly from the corresponding characteristic of the stationary process.

To do this X in the solution of the stationary process must be replaced by X/((1 + 3jls)

(1 + ,2s)) and r by T(1 + p2s). Here s is the parameter of the Laplace transform.

As a result we obtain , 73

)2C 0( + 2C)
B (s, r, )= = 2( YS X

(,++ 4V_ .)( +, S+ V(, +S) ( + S-X)

+ I. 41C e% f +5)/r
4(1+s) x(T)- ( ++ 4] (16)

ane

As is known, the intensity of the diffuse light, at an optical depth r, is determined

by the formulas

I(s , 1)= B(-', +, efor )1> 0;
. (-18)
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t(. , ). O -B ('. ,. .C) for '< 0. (19)
• . (19)

In the nonstationary case for t = 1 we obtain

4(s, , )4(1- (1+s) x(T)+ 3(1+s-X

xl e-'" + -e ' (+s)i' - 12 x
2(1 -27)( + s - -A)

X + S + S/(t s) (L -- - )
T 2q (20)

for i >- 0 and i / 74

2 e- (1+s) (I+s- X)
. 4 2X.,

2 I+2s+V( +s)(+s-X)+ 12I (21)
21+1221) 1-)

for q ~ 0.

Manipulation of Eqs. (20) and (21) yields (see [4])

1(, .u)_V- -, ), )fs (. i,. u) (a- )- (fi,(; -., u)+

+f2(r., u)-f3(, q. u)l A(u-2,)- V3(. l( , - )-f4(., .u)+

+i(,c. ,. u)la- (22)

for 1 > 0;

(.. ,. a)- [f,(r, ) (, U, f(,. I. U)] (a-)-

-[ft, _q u) f2 (C, 'n, u] A(u-2r) (23)
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for 7 0. Here

1(T -U)= 4 1-- 4 (24)

42f.'. .) (I - 2)1) e- X .

(,+ ---'+ 2 Sin ,+ rf /75z
1- 2 2 • e" dt;

t .([t 1-4q2)+ 2(1 +4 (27)

0 for x< 0. (29)

It should be noted that for x(y) = 1 Eqs. (22)-(27) are identical to the results obtained(26)

175

1 2

our formulas. Figure 1 shows curves of the spreading of the 6.-pulse of light at an op-

6 2 (27)

( ) 4(1 x(28)

~-()-0 for X< 0. (29

It should be noted that for x(-) = 1 Eqs. (22)-(27) are identical to the results obtained

in [1].

Graphs of the temporal and angular structure of the light field were calculated from

our formulas. Figure 1 shows curves of the spreading of the 6.-pulse of light at an op-

tical depth of 7 = 1 in an isotropically scattering medium for forward directions of the
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diffuse radiation, at a 45* angle, and backward

(1800); in addition, Fig. 1 shows a similar

curve for the backward direction of scattered

light in a medium having a scattering indicatrix

of x(y) = 1 + x2 cos y for xl = 0.9. As seen from

Fig. 1, the nature of the variation of the curves 2.O0

matches the results of direct measurements

and calculations by the Monte Carlo method [5]. -

In the case of nonisotropic scattering the sig-

nal, reflected by the medium, has a maximum, t 6 a

which is displaced to the right with an increase Fig. 1. Curves of the spreading of
in the optical depth, and the curve itself be- a . -pulse at an optical depth of r =

comes1. 0: 1) 0; 2) 450; 3) 1800; 4) 1800
comes steeper, in a medium with a scattering func-

The angular structure of the light field in tion x(y) = 1 + 0. 9cos y. / 76

an isotropic and a nonisotropic medium is shown

in 7ig. 2. Here the intensity of the diffusely scattered radiation is plotted in polar co-

ordinates as a function of the scattering angle at the instants of dimensionless time

u = 2 and u = 6. All the curves are normalized to the corresponding value of the inten-

sity of the backward scattered light. The dashed lines denote the curves obtained for

an isotropic medi 'm, copied by us from [1]; the continuous lines are for a non-

isotropic medium with scattering f ictions of x(-y) = 1 + 0.9cos y . As seen from

the figure, with the changeover to a nonspherical

scattering function the fraction of light, scat-. IO

tered forward and to the side, is increased; but 2 \

the nature of the curves is not altered. A jump "

in the intensity value is visible on all the curves

for the angles arccos r/u. As pointed out in [1],

the jump is explained by the fact that at this in-

stant of time first-order scattered radiation dis-
Fig. 2. Angular structure of the

appears. The size of the jump decreases ra- light field at an optical depth of
light field at an optical depth of

pidly with an increase in optical depth, and for 7 = 1. 1) u = 2, x(y)= 1+ 0. 9cos y;
2)u=2, x(y) = 1;3) u= 6, x( = 1;

7 > 10 it is nearly absent. This result occurs
4)u = 6, x(y)= 1+ 0.9 cos y.

both for isotropic as well as for nonisotropic

scattering. From the formulas (22)-(29) it is easy to obtain similar results for real,

severely elongated envelopes too.
01



REFERENCES

1. I. L. Katsev, The propagation of a light pulse in a semi-infinite isotropic scattering
medium, Zh. Prik. Spektrosk., 9, No. 16 (1968).

2. V.V. Sobolev, Perenos luchistoy energii v atmosferakh zvezd i planet (Radiant
'Energy Transfer in Stellar and Planetary Atmospheres), Gostekhizdat Press,
Moscow, 1958.

3. I. N. Minin, Nonstationary radiation field, In book: Teoriya zvezdnukh spektrov
(Theory of Stellar Spectra), Nauka Press, Moscow, 1966.

4. G. Dech, Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa
(Guide to the Practical Application of the Laplace Transform), Nauka Press,
Moscow, 1971.

5. G. M. Krekov, Spatial-temporal structure of the light field in a medium with an
arbitrary scattering function, Izv. Vuzov, Ser. Fiz., No. 6 (1969).

Translated for the National Aeronautics and Space Administration
by Scripta Technica, Inc. NASw 2484.

8


